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This research contributes to the state of the art by allowing for the simultaneous 
deployment of modular buses and short-turning options, which have been previously 
studied separately.

The use of modular buses for short-turning can lead to a more efficient resource 
utilization compared to conventional fixed-line bus services.
To investigate this potential benefit, our study introduces a mixed-integer non-linear 
program that determines the number of modular units and possible short-turn options for 
all bus trips on a bus line, which provides significant value for bus operators.

Study Contributions:
• Develops, for the first time, a unifying mathematical formulation for the scheduling of 

autonomous modular buses considering short-turning options.
• Linearizes constraints of the developed mathematical model to reduce its complexity.
• Highlights the potential improvement compared to the as-is operations performed by 

conventional buses.
• Demonstrates the potential impact of the proposed modular bus scheduling model with 

short-turning options using data from a real case study of an urban bus service in 
Milan, Italy.
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1. The model has been tested for up to 20 bus trips and can support a larger network

2. Comparing our approach with the as-is scenario reveals variations in passenger loads, with 
Trips 1 and 13 showing the greatest differences. 

• In our case study of bus line 54 in Milan, we demonstrated an improvement potential of 50% 
in terms of the number of deployed modular units, 5% in terms of km-traveled, and 52% in 
terms of overall operational costs.

Key Findings

Figure 2. Passengers’ load variations for two selected trips.

Linearizations of the First Trip at the First Stop

To visualize the difference between the proposed approach and the as-is scenario, Figure 2 
presents variations in passenger loads when implementing each approach for trips 1 and 13, which 
had the highest passenger load variation.

The case study analyzes Line 54, which operates in Milan, Italy. The model has been implemented 
with Python, using the commercial solver Gurobi.

Figure 1. Topology of Milan’s Line 54.

Implementation & Application
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These inequality constraints are linearizations of the following non-convex equality constraint:
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