

Modular Bus Scheduling Problem with Short-turning Options

Alexandra Vasileiadou¹, Dr. Konstantinos Gkiotsalitis¹

Phd Candidate, Railways and Transport Laboratory, NTUA

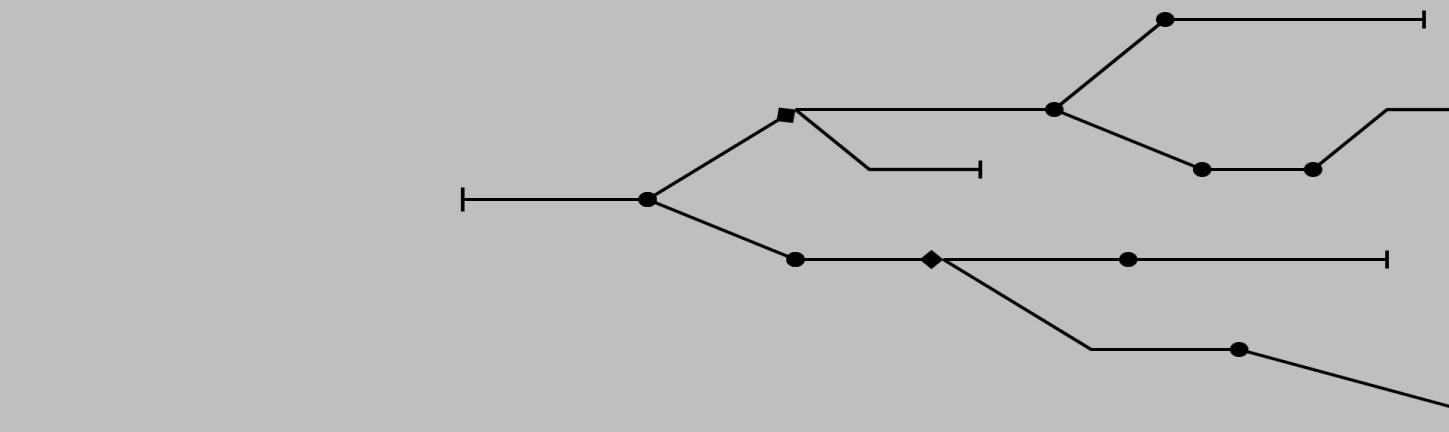
Assistant Professor, Railways and Transport Laboratory, NTUA

¹National Technical University of Athens, Department of Transportation Planning and Engineering, Athens, Greece

Research Contribution

This research contributes to the **state of the art** by allowing for the **simultaneous deployment of modular buses and short-turning options**, which have been previously studied separately.

The use of modular buses for short-turning can lead to a more efficient resource utilization compared to conventional fixed-line bus services.


To investigate this potential benefit, our study introduces a **mixed-integer non-linear program** that determines the **number of modular units** and possible short-turn options for all bus trips on a bus line, which provides significant value for **bus operators**.

Study Contributions:

- Develops, for the first time, a **unifying mathematical formulation** for the scheduling of autonomous modular buses considering short-turning options.
- Linearizes** constraints of the developed mathematical model to **reduce its complexity**.
- Highlights the potential **improvement** compared to the **as-is operations** performed by conventional buses.
- Demonstrates the potential impact of the proposed modular bus scheduling model with short-turning options using data from a **real case study** of an urban bus service in **Milan, Italy**.

Modular Bus Scheduling Problem with Short-turning Options

$$\begin{aligned} \min \sum_{t \in T} \sum_{s \in S} \sum_{u \in U} x_{s,u,t} c_{s,u,t} \\ \text{s.t.} \\ \sum_{u \in U} \sum_{s \in S} x_{s,u,t} = 1, \quad \forall t \in T \quad (1) \\ \tilde{b}_{t,k} \doteq \sum_{t \in T} w_{t,k,y} \sum_{u \in U} \sum_{s \in S} x_{s,u,t} \beta_{s,k,y} \quad \forall t \in T, k \in K \quad (2) \\ l_{1,1} \leq \gamma \sum_{u \in U} \sum_{s \in S} x_{s,u,1} u \quad (3) \\ l_{1,1} \leq \tilde{b}_{1,1} \quad (4) \\ l_{1,1} \geq \gamma \sum_{u \in U} \sum_{s \in S} x_{s,u,1} U - d_{1,1}M \quad (5) \\ l_{1,1} \geq \tilde{b}_{1,1} + (d_{1,1} - 1)M \quad (6) \\ a_{1,1} \doteq \sum_{y \in K, y \geq 1} w_{1,1,y} - l_{1,1} \quad (7) \\ z_{1,1} \doteq \frac{l_{1,1}}{\sum_{y \in K, y \geq 1} w_{1,1,y}} \quad (8) \\ g_{1,1,y} = (1 - z_{1,1}) w_{1,1,y}, \quad \forall y \in K, y \geq 1 \quad (9) \\ l_{1,k} \leq l_{1,k-1} + \tilde{b}_{1,k} - \sum_{y \in K, y < k} z_{1,y} w_{1,y,k} \sum_{s \in S} \sum_{u \in U} x_{s,u,1} \beta_{s,y,k}, \forall k \in K \setminus \{1\}, \forall y \in K, y < k \quad (10) \\ l_{1,k} \leq \gamma \sum_{s \in S} \sum_{u \in U} x_{s,u,1} U, \quad \forall k \in K \setminus \{1\} \quad (11) \\ l_{1,k} \geq l_{1,k-1} + \tilde{b}_{1,k} - \sum_{y \in K, y < k} z_{1,y} w_{1,y,k} \sum_{s \in S} \sum_{u \in U} x_{s,u,1} \beta_{s,y,k} (d_{1,k} - 1)M \approx \forall k \in K \setminus \{1\} \quad (12) \\ l_{1,k} \geq \gamma \sum_{u \in U} \sum_{s \in S} x_{s,u,1} U - (d_{1,k})M, \quad \forall k \in K \setminus \{1\} \quad (13) \\ z_{1,k} = \frac{l_{1,k} - l_{1,k-1} + \sum_{y \in K, y < k} z_{1,y} w_{1,y,k} \sum_{u \in U} \sum_{s \in S} x_{s,u,1} \beta_{s,y,k}}{\sum_{y \in K, y < k} w_{1,y,k}} \quad \forall k \in K \setminus \{1\} \quad (14) \\ a_{(1,k)} = \sum_{y \in K, y \geq k} w_{1,k,y} - (1 - z_{1,k}) \quad \forall k \in K \setminus \{1\} \quad (15) \\ g_{1,k,y} = (1 - z_{1,k}) w_{1,k,y}, \quad \forall k \in K, \forall y \in K: y \geq 1 \quad (16) \\ \sum_{u \in U} x_{1,u,t} \doteq 1 \quad (17) \\ l_{t,1} \leq \gamma \sum_{u \in U} \sum_{s \in S} x_{1,u,t} u \quad \forall t \in \{2,4,6, \dots\} \quad (18) \\ l_{t,1} \doteq \sum_{y \in K, y \geq 1} w_{t,1,y} + \sum_{y \in K, y \geq 1} g_{t-1,1,y} \quad \forall t \in \{2,4,6, \dots\} \quad (19) \\ a_{t,1} \doteq a_{t-1,1} - l_{t,1} + \sum_{y \in K, y \geq 1} w_{t,1,y} \quad \forall t \in \{2,4,6, \dots\} \quad (20) \\ z_{t,1} \left(a_{t-1,1} + \sum_{y \in K, y \geq 1} w_{t,1,y} \right) = l_{t,1} \quad \forall y \in \{2,4,6, \dots\} \quad (21) \\ g_{t,1,y} \doteq (1 - z_{t,1}) w_{t,1,y}, \quad \forall y \in K \sim \sim y \geq 1 \forall t \in \{2,4,6, \dots\} \quad (22) \end{aligned}$$

Linearizations of the First Trip at the First Stop

These inequality constraints are linearizations of the following non-convex equality constraint:

$$l_{1,1} = \min \{ \gamma \sum_{u \in U} \sum_{s \in S} x_{s,u,1} u; \tilde{b}_{1,1} \}$$

s.t.:

$$l_{1,1} \leq \gamma \sum_{u \in U} \sum_{s \in S} x_{s,u,1} u \quad (3)$$

$$l_{1,1} \leq \tilde{b}_{1,1} \quad (4)$$

$$l_{1,1} \geq \gamma \sum_{u \in U} \sum_{s \in S} x_{s,u,1} U - d_{1,1}M \quad (5)$$

$$l_{1,1} \geq \tilde{b}_{1,1} + (d_{1,1} - 1)M \quad (6)$$

Implementation & Application

The case study analyzes Line 54, which operates in **Milan, Italy**. The model has been implemented with Python, using the commercial solver Gurobi.

Figure 1. Topology of Milan's Line 54.

To visualize the difference between the proposed approach and the as-is scenario, Figure 2 presents **variations** in passenger loads when implementing each approach for trips 1 and 13, which had the highest passenger load variation.

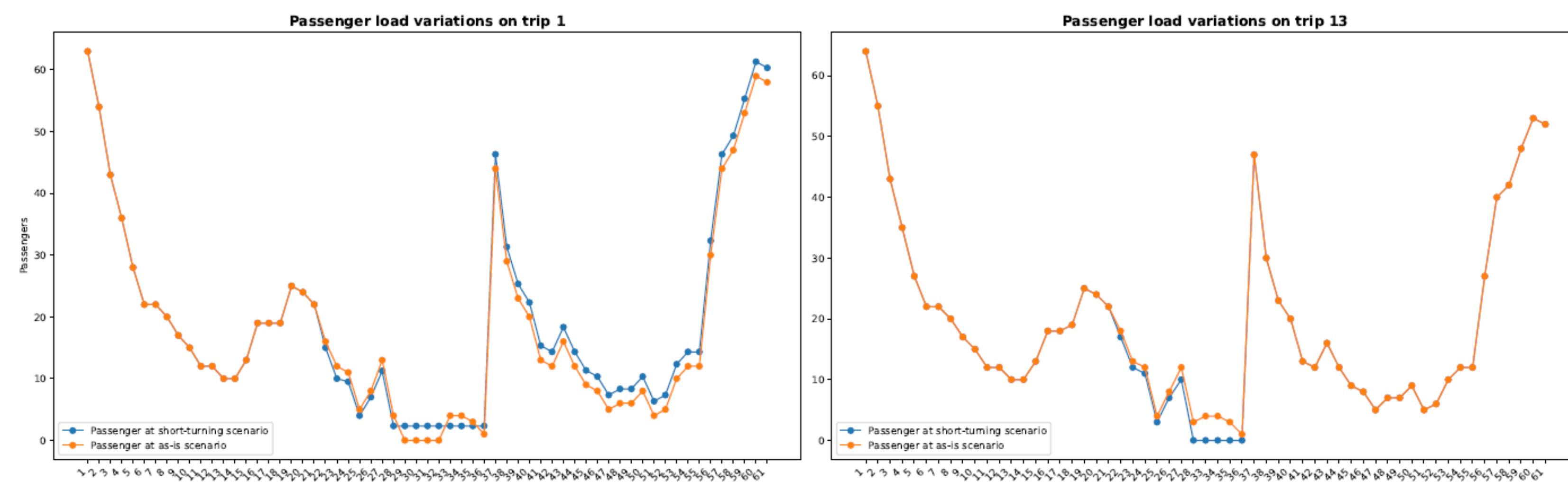


Figure 2. Passengers' load variations for two selected trips.

Trips	Modular bus scheduling with short-turning solution					As-is scenario				
	x^*	No of Skipped stops	No of modular units	km-traveled	Operational costs	x^*	No of modular units	km-traveled	Operational costs	Improvement
1	$x_{1,1,1}$	6	1	11.98	11.98	$x_{1,2,1}$	2	14.44	28.88	
2	$x_{1,1,2}$	2	1	12.55	12.55	$x_{1,2,2}$	2	14.44	28.88	
3	$x_{1,1,3}$	0	1	14.44	14.44	$x_{1,2,3}$	2	14.44	28.88	
4	$x_{1,1,4}$	0	1	14.44	14.44	$x_{1,2,4}$	2	14.44	28.88	
5	$x_{2,1,5}$	2	1	12.55	12.55	$x_{2,2,5}$	2	14.44	28.88	
6	$x_{1,1,6}$	0	1	14.44	14.44	$x_{1,2,6}$	2	14.44	28.88	
7	$x_{1,1,7}$	0	1	14.44	14.44	$x_{1,2,7}$	2	14.44	28.88	
8	$x_{1,1,8}$	0	1	14.44	14.44	$x_{1,2,8}$	2	14.44	28.88	
9	$x_{2,1,9}$	2	1	12.55	12.55	$x_{1,2,9}$	2	14.44	28.88	
10	$x_{1,1,10}$	0	1	14.44	14.44	$x_{1,2,10}$	2	14.44	28.88	
11	$x_{1,1,11}$	0	1	14.44	14.44	$x_{1,2,11}$	2	14.44	28.88	
12	$x_{1,1,12}$	0	1	14.44	14.44	$x_{1,2,12}$	2	14.44	28.88	
13	$x_{1,1,13}$	6	1	11.98	11.98	$x_{1,2,13}$	2	14.44	28.88	
14	$x_{1,1,14}$	0	1	14.44	14.44	$x_{1,2,14}$	2	14.44	28.88	
15	$x_{2,1,15}$	2	1	12.55	12.55	$x_{1,2,15}$	2	14.44	28.88	
16	$x_{1,1,16}$	0	1	14.44	14.44	$x_{1,2,16}$	2	14.44	28.88	
17	$x_{2,1,17}$	2	1	12.55	12.55	$x_{1,2,17}$	2	14.44	28.88	
18	$x_{1,1,18}$	0	1	14.44	14.44	$x_{1,2,18}$	2	14.44	28.88	
19	$x_{1,1,19}$	0	1	14.44	14.44	$x_{1,2,19}$	2	14.44	28.88	
20	$x_{1,1,20}$	0	1	14.44	14.44	$x_{1,2,20}$	2	14.44	28.88	
Total operational costs					274.43	577.6				
Total km-traveled					274.43	288.2				
Total modular units					20	40				

Key Findings

- The model has been tested for up to 20 bus trips and can support a larger network
- Comparing our approach with the as-is scenario reveals variations in passenger loads, with Trips 1 and 13 showing the greatest differences.
- In our case study of bus line 54 in Milan, we demonstrated an improvement potential of 50% in terms of the number of deployed modular units, 5% in terms of km-traveled, and 52% in terms of overall operational costs.

Contact Information

Corresponding Author: Dr. Konstantinos Gkiotsalitis
Assistant Professor, Railways and Transport Laboratory, NTUA
E-mail: kgkiotsalitis@civil.ntua.gr

